Determination of the electron distribution in thin barrier AlGaAs/GaAs superlattices by capacitance-voltage profiling
Annotation
Electron density distribution in uniformly doped AlGaAs/GaAs superlattices with respective layer thicknesses 1.5/10 nm and a different number of quantum wells was investigated. Experimental samples containing 3, 5 and 25 periods with the same layer parameters were grown by molecular beam epitaxy. Capacitance-voltage profiling was used to determine the carrier concentration profiles in the structures both numerically and experimentally. During the analysis of experimental capacitance-voltage characteristics it was found that the maximum electron concentration increases with an increase in the number of quantum wells starting from 7,1∙1016 сm–3 for 3 wells up to 9,2∙1016 сm–3 for 25 wells with overall superlattice doping level of 1017 сm–3. In some samples saturation areas are observed on the concentration profiles, that are associated with the region of superlattice. Concentration values, obtained from computer modeling, correspond to the experimental data with an error of less than 10 %. Capacitance-voltage profiling is a suitable technique for determining the carrier concentration profiles in thin barrier superlattices. Despite the fact that the method provides distribution of the “apparent” carrier concentration profile, it can be used to estimate the dopant atoms distribution in the strongly coupled quantum well heterostructures.
Keywords
Постоянный URL
Articles in current issue
- Pulse recording of dynamic holograms in bismuth silicate crystal in a broad wavelength range
- Hybrid endoscope with television and multispectral image processing for the internal organs cancer early diagnostics
- Modelling of a composite waveguide holographic display
- Application of infrared spectroscopy methods in studying compositions for paper sizing
- Distribution optimization method of pixel density by surveillance area
- Evaluation and development of a method for compensating the positioning error of computer numeric control equipment
- Compensation of output external disturbances for a class of linear systems with control delay
- Luminescence technique for studying the growth of AgInS2 quantum dots
- Peculiarities of pulsed laser deposition of thin InGaAsN films in an active background gas atmosphere
- Spectral and kinetic properties of silver sulfide quantum dots in an external electric field
- Influence of nano-sized horizontal inhomogeneities on surface profiling by means of XPS
- Organic light-emitting diodes with new dyes based on coumarin
- Fabrication and characterization of hybrid composite of Al6082/SiC/rice husk powder using friction stir processing
- A multi-path secure routing for the detection of node capturing attack in wireless sensor network
- A method for documenting architectural solutions of computing platforms
- Improving out of vocabulary words recognition accuracy for an end-to-end Russian speech recognition system
- Method for monitoring the state of elements of cyber-physical systems based on time series analysis
- Application of the text wave model to the sentiment analysis problem
- Automated evaluation of ECG parameters during the COVID-19 pandemic
- Multi-agent adaptive routing by multi-headattention-based twin agents using reinforcement learning
- Joint learning of agents and graph embeddings in a conveyor belt control problem
- Simulation of radiative transfer in gas-liquid foams
- The effect of signal-to-noise ratio value on the error in measuring acoustic emission parameters: statistical assessment
- Simulating the process of steady-state thermoreflectance for measuring the thermal conductivity of materials
- Modeling and simulation ofone- and two-row six-bladed ducted fans
- Differential-difference model of heat transfer in solids using the method of parametric identification